

Preparação de superfícies por jateamento: Influência do equipamento, abrasivo e operador na performance do processo

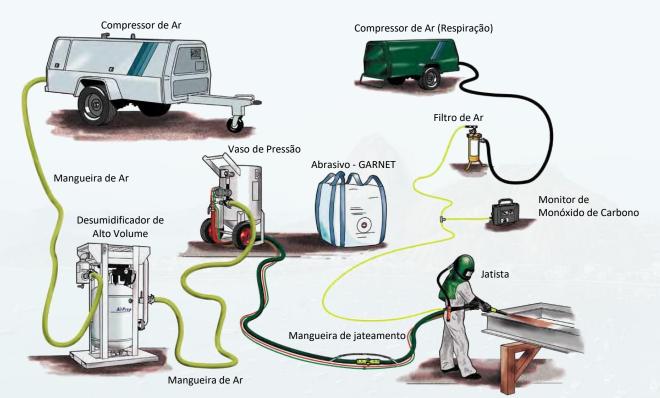
Objetivo

Apresentar um compilado das boas práticas do processo de Preparação de Superfície por Jateamento.

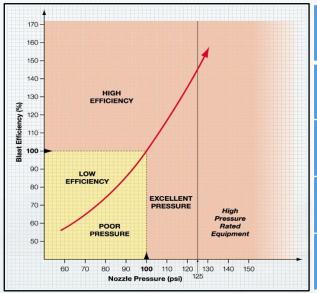
Proteger as estruturas da corrosão e garantir a durabilidade / evitar falhas prematuras do revestimento com um processo mais rápido, seguro e com menor custo.

Os três pilares para a otimização do jateamento

Os três pilares para a otimização do jateamento



Jato Seco Convencional



Pressã	o no Bico (Perda de Eficiência (%)	
100 psi	para	94 psi	9.0 %
100 psi	para	90 psi	15.0 %
100 psi	para	80 psi	30.0 %
100 psi	para	70 psi	45.0 %

Para cada perda de 1 psi de 100 psi no bico, a queda de rendimento do jato é em torno de 1,5%

Is your compressor delivering and maintaining enough air?

Air consumption (CFM) per blast nozzle using Garnet abrasive.

1. Noz	zle Size		2. Nozzle Pressure						
		50 psi	60 psi	70 psi	80 psi	90 psi	100 psi	120 psi*	140 psi*
No. 2	1/8"	14	17	19	21	24	26	30	34
No. 3	3/16"	32	37	42	47	52	57	67	77
No. 4	1/4"	57	66	75	84	93	103	119	136
No. 5	5/16"	89	103	117	131	145	158	186	214
No. 6	3/8"	129	149	169	189	209	229	269	309
No. 7	7/16"	176	203	230	258	285	312	367	422
No. 8	1/2"	229	265	300	336	371	407	478	549
No. 10	5/8"	356	412	468	524	580	632	744	856
No. 12	3/4"	516	596	676	756	836	916	1076	1236
EFFICI	ENCY	47%	55%	64%	74%	86%	100%	130%	165%

+20 cfm/airfed helmet and 50% reserve to allow for the nozzle wear factor.

MANGUEIRA DE AR:

DIMENSÃO MÍNIMA – 4 X DIÂMETRO DO BICO DE JATO

MANGUEIRA DE JATO:

MÍNIMO – 3 X DIÂMETRO DO BICO DE JATO (MÁXIMO: 5 VEZES.)

MENOR COMPRIMENTO, MENOR PERDA DE CARGA / PRESSÃO

FUNCIONAMENTO DO BICO COM VENTURI:

- Ar e abrasivo entram no bico de jato, são compactados e acelerados ao passar no orifício.
- 2. A partir do orifício, o ar e abrasivo adentram a seção de saída do venturi, o qual alarga progressivamente.
- 3. A medida que o ar sai do venturi, ela vai expandindo, aumentando a sua velocidade significativamente.
- 4. O aumento da velocidade do ar faz com que o abrasivo também seja acelerado.

Worn Venturi Nozzle	Approximate abrasive speed	Blast Pattern
	215 mph 346 km/h	Inefficient blast pattern with concentrated cente spot and lightly blasted edges
New Venturi Nozzle		
	450 mph 724 km/h	Efficient blast pattern with large, even blast coverage and boosted productivity!

Com um dispositivo de medição do bico, é possível checar o nível de desgaste do bico de jateamento, permitindo saber o momento que o mesmo deve ser trocado.

É natural que quanto mais se jatear, mais o bico de jato se desgastará. Fazendo que mais ar será necessário para se manter a pressão, e consequentemente, maior o consumo de abrasivo. Com um ar limitado, teremos uma queda na pressão.

Resultado: perda de eficiência e maior custo no processo.

Secador de Ar

De onde vem toda a umidade?

Para se obter a pressão de 100 psi, o compressor deve 7 pés cúbicos de ar em 1 pé cúbico. Ou seja, teremos imediatamente, 7x mais umidade no volume final.

Durante o processo de compressão, o ar ganha temperatura, mantendo a umidade no estado gasoso. Porém, com o esfriamento do ar nas mangueiras, ou mesmo no equipamento de Jato, a umidade condensa e transforma-se para o estado líquido. A água atrapalha o escoamento do abrasivo.

Além disso, o ar úmido também é mais pesado, demandando uma energia extra de aproximadamente 15% para a sua locomoção no sistema.

Válvula Reguladora

ZIRTEC

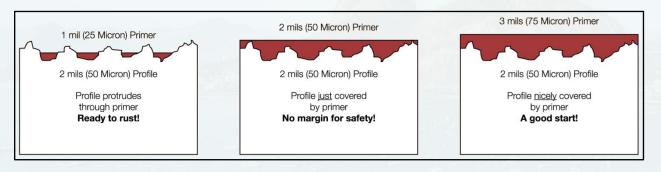
Instrução para o mix perfeito:

- Fechar totalmente a valvula.
- Abrir lentamente a vávula até que se observe uma leve alteração na cor da saída do ar no bioco de jateamento. É indicado o uso de válvulas que permitam este ajuste fino.
- Essa é a quantidade suficiente de abrasivo para um jateamento rápido e eficiente sem o desperdício de abrasivo.

Os três pilares para a otimização do jateamento


- Propriedade Mecânica:
 - Dureza (agressividade)
 - Granulometria (perfil)
 - Geometria (forma do perfil)
 - Friabilidade (resistência a fratura)
- Processamento dos contaminantes:
 - Visíveis Sujidade, barro, pó, detritos
 - Invisíveis Sais, cloretos

Abrasivo	Dureza (MOHS)
Casca de Noz	3
Plastico	4
Zirflocos	6
Garnet	8
Óxido de Aluminio	9
Diamante	10



1. Perfil de Rugosidade

• Recomenda-se utilizar o menor abrasivo que seja suficiente para obter o perfil de rugosidade desejado. Quanto mais fino o abrasivo, maior a quantidade de impacto na área de jateamento. Quanto mais partículas, mais rápido se finaliza o trabalho.

Regra Geral: Perfil não deve ser maior que a espessura da camada seca (DFT - Dry Film Thickness) do Primer. Perfil excessivo aumenta o consumo de tinta.

2. Padrão de Limpeza

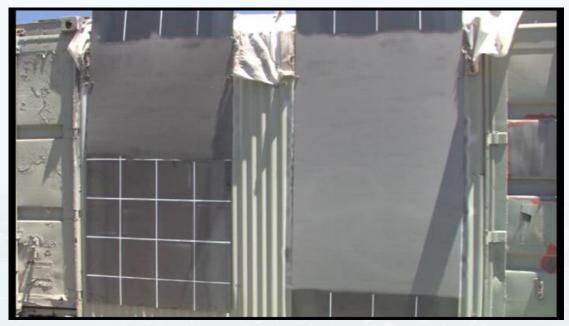
Nace No 4

Standard	NACE	SSPC	Swedish / ISO 8501-1
Brush Off	4	SP7	SA 1
Commercial	3	SP6	SA 2
Near White Metal	2	SP10	SA 2.5
White Metal	1	SP5	SA 3

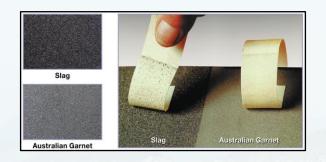
BLAST CLASS 2 BLAST CLASS 2 1/2 BLAST CLASS 3 BLAST CLASS 1 UNBLASTED Nace No 2 Nace No 1 Nace No 4 Nace No.3 RUST RUST This condition cannot normally be attained when removing adherent mill scale RUST RUST RUST GRADE C RUST RUST RUST BLAST CLASS 1 BLAST CLASS 2 BLAST CLASS 2 1/2 BLAST CLASS 3 UNBLASTED

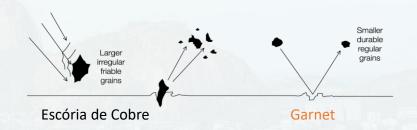
Nace No 3

Nace No 2

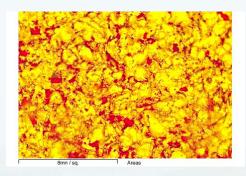

Nace No 1

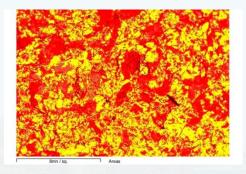
Removeu o revestimento, carepa ou mesmo a oxidação. Mas será que a superfície está realmente limpa? E como isso pode prejudicar a durabilidade da pintura?





Contaminação da Superfície


GMA Garnet


Escória de Cobre

GMA Garnet -10.7%

Escória de Cobre - 51.8%

Friabilidade

Além da qualidade da limpeza, a formação de pó causa:

- Impacto na Produtividade (reduz visibilidade)
- Segurança e Saúde do Jatista e pessoas no entorno (inalação)
- Sujidade e danos nos equipamentos periféricos (custo de contenção e remoção)
- Potencial Impacto Ambiental (transferência de contaminantes para o solo / água)

Comparativo da Geração de Poeira

Óxido de Alumínio

Cornet

CPWR [O

BERYLLIUM

What is it?

Beryllium is a metal used for decades in nuclear weapons and energy production. Its use is growing in other industries like electronics. It has also been found in coal and copper slags used for abrasive blasting and paint removal.

Breathing in beryllium dust or touching surfaces contaminated with beryllium dust can lead to Chronic Revyllium Disease (CRD). CRD is a serious scarring.

Before beginning work ...

for disease.

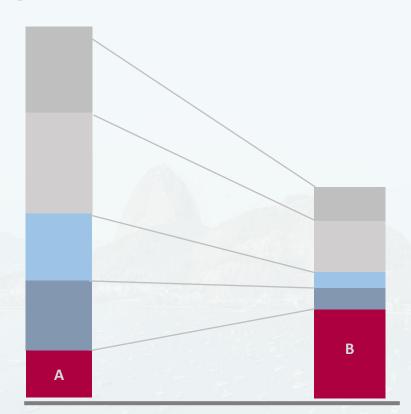
If there is a risk of airborne beryllium in the work area, your exposure should be monitored

TEST for exposure

Your employer should make sure you are
not exposed by testing for beryllium dust in the
air. Blood testing may also be used to identify
sensitization to beryllium, which increases risk

Custo vs Valor

Custo Total por m²


Descarte

Equipamento

Limpeza

Mão de Obra

Abrasivo

Qual a diferença na prática?

ZIRTEC

GMA

Teste Prático

Parâmetros

- Jateamento em Aço Carbono 1020
- Chapa 1m2 com carepa de laminação grau A
- Bico de Jateamento: #7 de venturi longo
- Pressão no bico: 100 psi
- Análises:
 - Produtividade (m²/hr)
 - Consumo de abrasivo (kg/m²)
 - Perfil de rugosidade (μm)
 - Densidade de picos
 - Qualidade da Limpeza microscopia digital (incrustação, manchas)
 - Geração de Pó (visual)

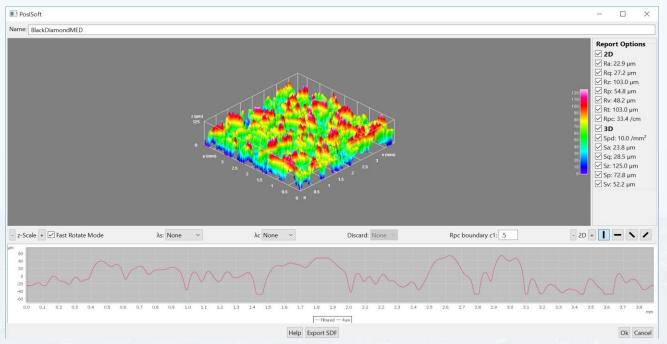
Resultados

Produto	Tempo de Jato (s)	m² /h	kg/m²	Perfil de Rugosidade (µm)	Densidade de Picos
Chinese Garnet 30/60	116,09	31,01	14,04	58.25	14061
GMA Garnet Extremeblast GX-3	107,08	33,62	7,93	90.75	12534
GMA Garnet Newsteel	61,42	58,61	8,54	55	24884
GMA Garnet Speedblast GX-1	85,19	42,26	6,51	67.5	14338
GMA Garnet Toughblast GX-2	97,32	36,99	8,44	87.5	13621
Green Diamond - 20/50	221,54	16,25	20,95	87.5	8053
Escória de Cobre 20/40	145,10	24,81	13,22	105	6988
Escória de Cobre 12/40	260,49	13,82	19,73	147.5	6136
Zirflocos 5050 2080 FF	174,12	20,68	16,53	78.6	11876

Produtividade

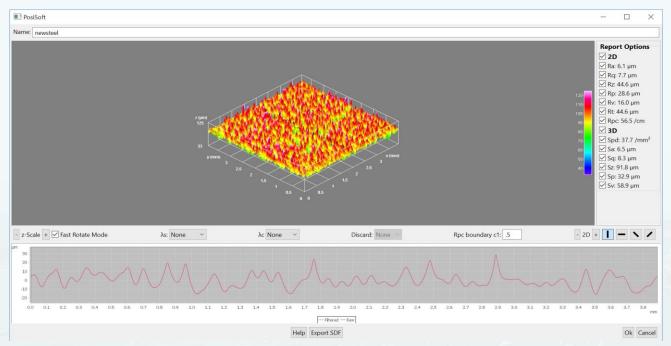
Produto	Tempo de Jato (s)	m² /h	kg/m²	Perfil de Rugosidade (μm)	Densidade de Picos
GMA Garnet Newsteel	61,42	58,61	8,54	55	24884
GMA Garnet Speedblast GX-1	85,19	42,26	6,51	67.5	14338
GMA Garnet Toughblast GX-2	97,32	36,99	8,44	87.5	13621
GMA Garnet Extremeblast GX-3	107,08	33,62	7,93	90.75	12534
Chinese Garnet 30/60	116,09	31,01	14,04	58.25	14061
Escória de Cobre 20/40	145,10	24,81	13,22	105	6988
Zirflocos 5050 2080 FF	139,31	25,84	17,55	78.6	11876
Green Diamond - 20/50	221,54	16,25	20,95	87.5	8053
Escória de Cobre 12/40	260,49	13,82	19,73	147.5	6136

Densidade de Pico

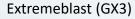


Produto	Tempo de Jato (s)	m² /h	kg/m²	Perfil de Rugosidade (µm)	Densidade de Picos
GMA Garnet Newsteel	61,42	58,61	8,54	55	24884
GMA Garnet Speedblast GX-1	85,19	42,26	6,51	67.5	14338
Chinese Garnet 30/60	116,09	31,01	14,04	58.25	14061
GMA Garnet Toughblast GX-2	97,32	36,99	8,44	87.5	13621
GMA Garnet Extremeblast GX-3	107,08	33,62	7,93	90.75	12534
Zirflocos 5050 2080 FF	116,79	30,83	10,55	78.6	11876
Green Diamond - 20/50	221,54	16,25	20,95	87.5	8053
Escória de Cobre 20/40	145,10	24,81	13,22	105	6988
Escória de Cobre 12/40	260,49	13,82	19,73	147.5	6136

Densidade de Pico



Densidade de Pico



Qualidade Limpeza – Microscopia

Toughblast (GX2)

Speedblast (GX1)

Newsteel

Qualidade Limpeza – Microscopia

Escória de Cobre

Green Diamond

Garnet Chinês

Abrasivo Garnet

ZIRTEC

- Garnet é um abrasivo mineral
- Inerte
- Isento de sílica livre
- Isento de ferro livre
- Alta densidade e baixa friabilidade
- Produto natural de duas origens:

Rocha

Average Chemical Composition (Typical)					
SiO ₂ *		35%			
Al ₂ O ₃		19%			
FeO		15%			
Fe ₂ O ₃		19%			
MgO		7%			
CaO		3%			
TiO ₂		1%			
MnO		1%			

*Refers to ${\rm SiO_2}$ bound within the lattice of the homogeneous garnet crystal (not free silica).

Other Characteristics (Typical)			
Radioactivity	Non-detectable above background		
Moisture Absorption	Non-hygroscopic, Inert		
Total Chlorides	1 - 3 ppm		
Conductivity	90 µS/cm (9 mS/m)		

Mineral Composition (Typical)					
Garnet (predominately Almandrie)		>92%			
Pyroxene		3%			
Ilmenite		<196			
Quartz (tree sitics)		< 0.3%			
Hornblende		<3.5%			
Other		0.3%			

Physical Characteristics (Typical)					
Bulk Density	149.82 lbs/ft ³ (2.4 t/m ³)				
Specific Gravity	4.1				
Hardness (moh)	8.0				
Melting Point	2282°F (1250°C)				
Shape of Natural Grains	Sub-angular to Angular				

GMA Garnet TM - Solução completa

- Multinacional de origem Australiana e referência mundial na qualidade de processamento do Garnet.
- Engenharia de Produto Mix para cada tipo de aplicação.
- Único fornecedor global que detém toda a cadeia de suprimento: desde a extração na mina, processamento até a distribuição internacional.
- Garantia de constância e previsibilidade.

GMA Garnet TM - Solução completa

ZIRTEC

The Best of Both Worlds

GMA is now able to engineer blends of angular hard rock garnet with our durable alluvial garnet.

For over 35 years, GMA has produced the highest quality premium garnet from our own source of almandine garnet, known for its natural hardness, durability and abrasive characteristics.

Throughout the decades, GMA has led the development of garnet abrasives for blasting applications. Our expertise in product application and development has enabled GMA to become the preferred choice for major oil companies, shipvards and international fabricators on a truly global scale.

With the acquisition of two additional garnet sources, we have developed a new and improved product range that increases the capability and performance of our products.

GMA Engineered Range

ANGULAR

SUB-ANGULAR

Hard rock garnet properties of hard through the toughest thickest coatings.

Alluvial garnet Provides superior cleaning for optimal surface preparation and enhanced blast performance.

Engineered blend GMA product is designed to clean faster at the lowest possible consumption rate.

Products are QPL listed, CARB approved and adhere to SSPC-AB1 and MIL-A-22262B(2).

Our Engineered Range

ExtremeBlast (GX3)

Our coarsest grade for removal of resistant specialist coatings, heavy liners and marine foulings. Ideal for removing high build coatings of 30+ mil and producing an exceptionally clean surface, enabling

- remarkable bonding of specialist coatings. Surface profile: 3.5 – 4.5 mil (90 – 115 μm)
- · Blasting rates: Up to 260 ft2/hr
- . Consumption rate: As low as 2 lb/ft2.

ToughBlast (GX2)

Our versatile grade formulated for fast removal of high build coatings and heavy rust. Ideal for removing thick coatings up to 30 mil and offers superior preparation for coating adhesion.

- Surface profile: 3.0 4.0 mil (75 100 um)
- Blasting rates: Up to 360 ft²/hr
- . Consumption rate: As low as 1.5 lb/ft2.

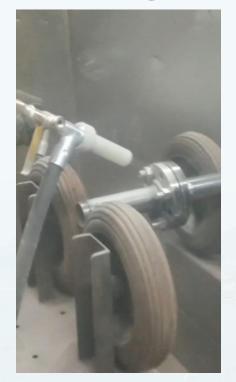
SpeedBlast (GX1)

Our general maintenance grade engineered for light coatings and rust removal.

Ideal for removing thin coatings, light rust and for wet abrasive blast applications. Produces an exceptionally clean surface, enabling ideal preparation for most industrial coatings.

- Surface profile: 2.0 3.0 mil (50 75 μm)
- Blasting rates: Up to 360 ft²/hr
- . Consumption rate: As low as 1.5 lb/ft2.

Optimal performance varies dependent on the coating type, thickness and required profile.



Aplicações

Jato de Sucção

Jato de Pressão

Jato Úmido

Vantagens do Jateamento com Garnet

- ALTA PRODUTIVIDADE
- BAIXA TAXA DE POEIRA
 - BAIXO CONSUMO
- VERSATILIDADE DE APLICAÇÃO ▶
- ALTA QUALIDADE DE LIMPEZA
 - AMBIENTALMENTE SEGURO
- SEGURANÇA AO JATISTA E PESSOAS DO ENTORNO >

Os três pilares para a otimização do jateamento

Treinamento e Capacitação

- Ângulo
- Distancia
- Técnica de Movimentação

- ✓ Ensure proper standoff distance
- ✓ Optimize nozzle angle
- ✓ Have a consistent blast motion.

ZIRTEC

Treinamento e Capacitação

OBRIGADO!

andrew@zirtec.com.br

