

Medição da Condutividade de Extratos Aquosos de Abrasivos – Comparação dos Resultados Obtidos Utilizando-se as Normas ASTM D4940 e ISO 11127-6

Motivação

Tabela 1 - Antes do Jateamento Abrasivo ou Hidrojateamento

Inspeção	a realizar	Método	Quando	Critérios de aceitação
Limpeza da	a superfície	ABNT NBR 15185	Antes jateamento abrasivo ou hidrojateamento	Superfície isenta de óleo, graxa, gordura, tintas, sais ou outros contaminantes em toda a área a ser tratada
da supe	itemperismo rfície sem itura	ISO 8501-1	Antes do jateamento abrasivo ou hidrojateamento	Conforme padrões da ISO 8501-1
Grau de in	temperismo		Antes do iateamento abrasivo	Conforme padrões da ASTM

ASTM D4940

1.2 This test method does not identify the ionic species present nor provide quantitative results on each species.

T				peneira de número 40
	Impurezas no abrasivo	_	Antes do jateamento abrasivo	Isentos de sinais visíveis de
ı	·		rance de jateamente abraerve	impurezas
	Teor de cloretos no abrasivo	ASTM D 4940	Antes do jateamento abrasivo	Inferior a 40 ppm
İ	Oxidação no abrasivo	-	Antes do jateamento abrasivo	Isento

Preparação de Superfície - Detalhe Importante Publicado

Após o Jateamento Abrasivo

- Grau de limpeza
- Perfil de rugosidade
- Avaliação de pó na superfície
- Etc

Antes do Jateamento Abrasivo

- Qualidade do ar comprimido
- Avaliação do desgaste do bico
- Avaliação das condições técnicas dos abrasivos
- Etc

N-9

REV. J

03 / 2022

-PÚBLICA-

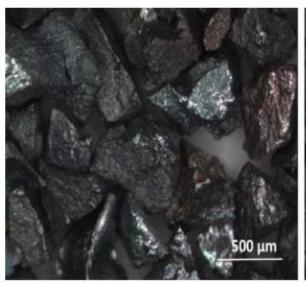
Tabela 1 - Antes do Jateamento Abrasivo Seco ou Úmido e Hidrojateamento

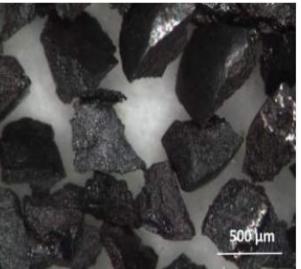
Ļ	Inspeção a realizar	Método	Quando	Critérios de aceitação
	Contaminação Iônica no Abrasivo novo ou reutilizado	ASTM D4940	Antes do jateamento abrasivo seco ou úmido	Condutividade elétrica máxima: 1000 µmho/cm Nota: 1 µmho/cm = 1 µS/cm
	Análise de óleo em abrasivos reutilizados	ASTM D7393	Antes do jateamento abrasivo seco ou úmido ou hidrojateamento com abrasivo	Deve estar isento de óleo

Pode prejudicar a aderência do revestimento ao substrato e ainda causar o aparecimento de falhas (olho de peixe/cratera)

Ex.: sais solúveis

Pode ocasionar falhas prematuras: empolamento osmótico e corrosão do substrato





	W Abrasives	Competitor
Conductivity (ASTM D4940, μS/cm)	17 17	627 627

Table 2: Conductivity of abrasives

(µS/cm)

W Abrasives grit (left) and competitor grit (right)

Metal Finishing

Separate Print: Vol. 16, July issue, 2015
Effect Of Soluble Salts Of Steel Abrasives
On Blasted Steel Surfaces (p. 18-21)

Table 3: Surface density of soluble contaminants in µg/cm² (Bresle, ISO 8502-6/9)

Test Method: 0 8502-6/9	Test Number	Steel plate before blasting (µg/cm²)	Steel plate after blasting with W Abrasives (µg/cm²)	Steel plate after blasting with competitor product (µg/cm²)
Met	1	1,1	1,0	3,0
est Met 8502-6/9	2	1,2	0,8	2,8
	3	1,0	1,0	2,8
<u>se</u>	4	1,1	0,8	2,3
Bresle IS	5	1,0	0,8	2,6
	Average	1,1	0,9	2,7

Autor da busca do artigo técnico: Felipe NACIUK

Requisito das Normas SSPC-AB (Partes 1 a 4)

SSPC-AB 1 January 12, 2015

SSPC: The Society for Pro Abrasive Standa

Mineral and Slag A

4.1.4 Water Soluble Contaminants: The conductivity of the abrasive shall not exceed 1000 micromhos/cm (1 mho = 1 siemen) when tested in accordance with ASTM D4940 (see Note 8.1).

SSPC: The Society for Protectiv

ABRASIVE STANDARD

Cleanliness of Recycled Ferrous Me

4.4 WATER-SOLUBLE CONTAMINANTS: A single random sample of approximately 300 milliliters (10 fluid ounces) of cleaned work mix shall be tested for conductivity in accordance with ASTM D4940. The conductivity of the abrasive work mix shall not exceed 1000 micromhos/cm (1 mho = 1 siemen). The test shall be performed once every 12 hours or once every work shift, whichever period is shorter (see Notes 6.2 and 6.3).

Table 2 — Particular requirements for olivine abrasives MgO.SiO₂.Fe₂O₃

Property		Requirement	Test method
Particle size range and distribution		See <u>Table 1</u>	ISO 11127-2
Apparent density	kg/m ³ (kg/dm ³)	(3,0 to 3,3) × 10 ³ (3,0 to 3,3)	ISO 11127-3
Mohs hardness ^a		min. 6	ISO 11127-4
Moisture	% (mass fraction)	max. 0,2	ISO 11127-5
Conductivity of aqueous extract	μS/cm	max. 250	ISO 11127-6
Water-soluble chlorides	% (mass fraction)	max. 0,002 5	ISO 11127-7

a Another method for assessing hardness may be used, together with an appropriate minimum requirement, by agreement between the interested parties.

Table 2 — Particular requirements for almandite garnet abrasives

Property		Requirement	Test method
Particle size range and distribution		See <u>Table 1</u>	ISO 11127-2
Apparent density	kg/m³ (kg/dm³)	$(4.0 \text{ to } 4.2) \times 10^3$ (4.0 to 4.2)	ISO 11127-3
Mohs hardness ^a		min. 6	ISO 11127-4
Moisture, % mass fraction		max. 0,2	ISO 11127-5
Conductivity of aqueous extract, µS/cm		max. 250	ISO 11127-6
Water-soluble chlorides, % mass	raction	max. 0,002 5	ISO 11127-7

Another method for assessing hardness may be used, together with an appropriate minimum requirement, by agreement between the interested parties.

ISO 11126-8

MgO.SiO₂.Fe₂O₃

ISO 11126-10

Fe₃Al₂(SiO₄)₃

Ca₃Fe₂(SiO₄)₃

SSPC-AB (1 a 4)

ASTM D4940

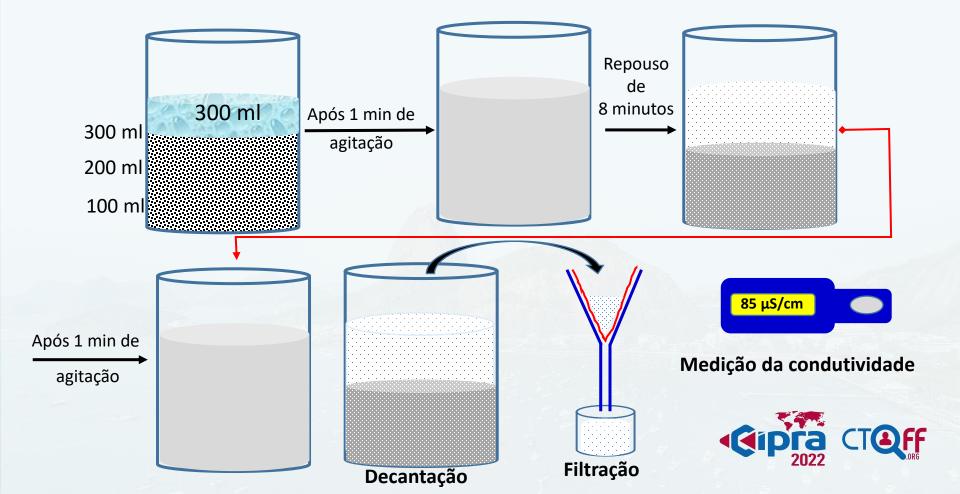
Máximo de 1000 µS/cm

Metodologias Diferentes

ISO 11126

ISO 11127-6

Máximo de 250 µS/cm


Objetivos do Estudo

Realização de um estudo comparativo, com diferentes abrasivos, para se avaliar os resultados de condutividade dos extratos aquosos, obtidos pela utilização das duas metodologias estabelecidas nas normas ASTM D4940 e ISO 11127-6.

- Obtenção de dados técnicos que possam ser usados, quando necessário, por nossos profissionais da área de proteção anticorrosiva, especialmente os inspetores de pintura.
- Contribuir, caso seja possível, com informações técnicas que possam ser úteis aos organismos de normatização.

ASTM D4940

ISO 11127-6 Após 1 h +Agitação Agitação (5min) repouso (5min) 100 ml 100 g 85 μS/cm Medição da condutividade Filtração

Repetibilidade e Reprodutibilidade

ASTM D4940

<u>Repetibilidade</u> – Dois resultados, cada um com a média de dois ensaios obtidos com o mesmo operador, podem ser considerados suspeitos se diferirem relativamente mais do que 5%.

<u>Reprodutibilidade</u> – Dois resultados, cada um a média de dois ensaios, obtidos por operadores em diferentes laboratórios devem ser considerados suspeitos se eles diferirem relativamente mais do que 22%.

ISO 11127-6

Se os resultados, em duplicata, apresentarem uma diferença superior a 10 % (relativa ao maior resultado), o ensaio deverá ser repetido.

<u>Informações Sobre os Ensaios Realizados</u>

Água:

Condutividade: (0,6 a 1,7) µS/cm

pH (papel indicador universal): entre 5 e 6

Papel de filtro (importado):

Para atender ao requisito da norma ASTM D4940

Funil de vidro + papel de filtro + água:

Condutividade do filtrado: (5 a 6) µS/cm

Condutivímetro:

Zero km, compensação de temperatura, soluções novas, com certificados e resultados operacionais excelentes.

Outros materiais:

Vidraria limpa, rinsada e seca em estufa, pelo menos 30 minutos a (105±5)°C.

Para Lembrar:

- Materiais limpos e "rinsados", com a água usada no ensaio.
- Testar o condutivímetro com as soluções de referência certificadas.
- Condutivímetro com compensação de temperatura.
- Medição da condutividade da água usada nos ensaios.
- Recomendação: medir a condutividade do conjunto (água+ funil de vidro com papel de filtro). Valor será deduzido da leitura obtida do extrato aquoso dos abrasivos.
- Descartar os primeiros 10 ml do filtrado.
- Rinsar, com o filtrado, a célula de medição (recomendação). Fazer pelo menos três leituras para obter a média.

ABRASIVOS UTILIZADOS

Granalha de aço angular nova: GH 25 (GA-Nv)

Garnet: #30/60/80 (Garnet)

Granalha MIX usada: S330/G25 (GEA-Us)

ABRASIVOS UTILIZADOS

α-Al2O3: # 16/30 (α-Al2O3)

Areia lavada: # "12/40" (Areia)

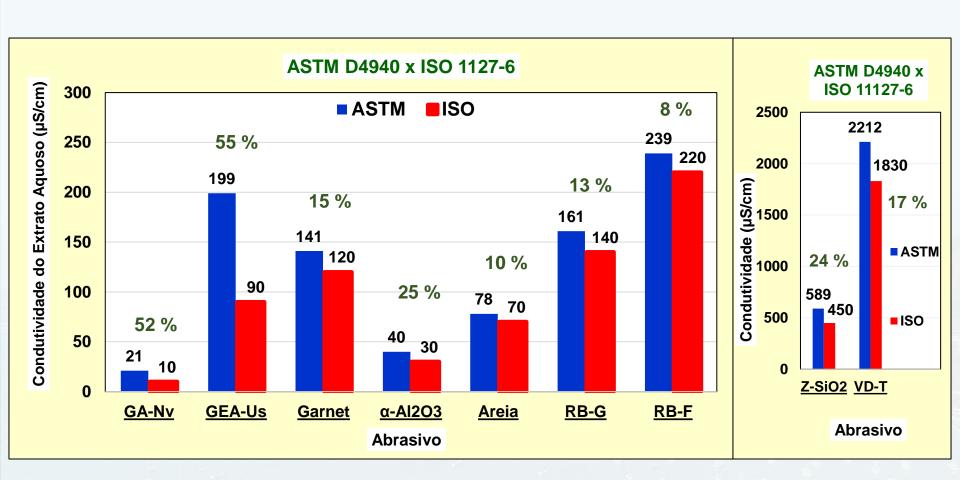
Z-SiO2: # 20/80 (Z-SiO2)

ABRASIVOS UTILIZADOS

Rocha basáltica:# 10/12 (RB-G)

Rocha basáltica:# 60 (RB-F)

Vidro triturado:# 80/100 (Vd-T)



Resultados de Condutividade (µS/cm)

Abrasivo	ASTM (D4940)	ISO 11127-6	Diferença R (%)	рН	
GA-Nv	21	10	52		
GEA-Us	199	90	55		
Garnet	141	120	15		←
α-Al2O3	40	30	25		
Areia	78	70	10	100 ml 80 — [Q]	
RB-G	161	140	13	6	
RB-F	239	220	8	6	
Z-SiO2	589	450	24	10 (ASTM) e 9 e 10 (ISO)	C
VD-T	2212	1830	17	10	

RESULTADOS

Experimento Extra (ASTM D4940)

Relação em Volume	Condutividade (µS/cm)
300 ml Abrasivo / 300 ml H ₂ 0	161
100 ml Abrasivo / 100 ml H ₂ 0	152
Diferença	5,6 %

- É um resultado para ser pensado !!!
- Também seria interessante inverter a ordem de colocação do abrasivo e da água.
- Certamente, estas ações poderiam facilitar a execução do teste em campo.

	ASTM	ISO
Abrasivo	300 ml	100 g
GA-Nv	1092 g	25 ml
GEA-Us	1327 g	20 ml
Garnet	741 g	43 ml
RB-G	495 g	70 ml
α-ΑΙ2Ο3	571 g	50 ml
Z-SiO2	407 g	76 ml

Observação: com estes dados não se pode calcular a massa específica.

Relação, V/V e M/V

X (abrasivo)
Y (água)

Relação	Volume/Volume		Massa/	Volume
Abrasivo	ASTM	ISO	ASTM	ISO
	300 ml	75 ml	1092 g	300 g
GA-Nv	300 ml	300 ml	300 ml	300 ml
GEA-Us	300 ml	60 ml	1327 g	300 g
GEA GS	300 ml	300 ml	300 ml	300 ml
Garnet	300 ml	129 ml	741 g	300 g
	300 ml	300 ml	300 ml	300 ml

Relação, V/V e M/V

X (abrasivo)
Y (água)

Relação	Volume/Volume		Massa/Volume	
Abrasivo	ASTM	ISO	ASTM	ISO
α-Al2O3	300 ml	150 ml 300 ml	571 g 300 ml	300 g 300 ml
RB-G	300 ml	210 ml 300 ml	495 g 300 ml	300 g 300 ml
Z-SiO2	300 ml	228 ml 300 ml	407 g 300 ml	300 g 300 ml

SSPC-AB (1 a 4)

ASTM D4940

Máximo de 1000 µS/cm

Metodologias Diferentes

ISO 11126

ISO 11127-6

Máximo de 250 µS/cm

Requisitos x Valores e Diferenças de Condutividade

8.1 The limitation for abrasive conductivity is based on results reported in SSPC 91-07, "Effect of Surface Contaminants on Coating Life."

Atenção com as especificações e contratos de pintura industrial, para evitar conflitos futuros.

Considerações Finais e Conclusões

- Os resultados de condutividade, dos extratos aquosos dos abrasivos, obtidos pelo uso da metodologia descrita na norma ASTM D4940 são mais altos que aqueles obtidos pelo uso da norma ISO 11127-6.
- Tal fato deve-se à relação abrasivo/água, tanto em volume (V/V) quanto em massa (M/V). No caso da norma ASTM D4940, o volume e a massa de abrasivo são maiores do que no caso da norma ISO 11127-6.
- De acordo com os resultados obtidos, a diferença pode ser maior ou menor dependendo da massa específica dos abrasivos, o que ficou comprovado pelos resultados obtidos com as amostras de granalha de aço em relação aos demais abrasivos.

Considerações Finais e Conclusões

- Para um mesmo abrasivo, a granulometria tem influência nos valores de condutividade, em função dos resultados dos abrasivos RB-G e RB-F. Nestes casos, a granulometria mais fina apresentou valores mais altos, por ambos métodos de análise, ASTM e ISO. Isto pode ser decorrente da maior área superficial, no caso do abrasivo de menor tamanho de partícula.
- Requisitos técnicos máximos (250 e 1000) μS/cm): Tema que merece ser discutido entre os comitês técnicos de normatização das duas instituições (AMPP e ISO). Não esquecer dos dados apresentado no trabalho da MF.

Os resultados apresentados neste estudo, bem como as respectivas considerações técnicas, referem-se somente às amostras analisadas nas datas de realização dos ensaios.

FIM

Muito Obrigado

Fernando Fragata

E-mail: fragata200@gmail.com

